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Why Si ?
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 Semiconducting property
 2nd most abundant element in the earth’s crust



Why nanostructured Si (Si nanowire) ?
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 Semiconducting property
 2nd most abundant element in the earth’s crust

Sm allsize

Kelzenberg M. D.; etal., N at.M at., 2010, 9,239.
Fan Z.; etal., P N A S ., 2008, 105,11066.
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Is nano Si affordable?
Yes.
But it’s not ‘green’



 Czochralski process (> 1000 °C)
 Energy intensive

 Chemical etching
 Waste of material

 Top-down

Nanostructured Si (Si nanowire) Preparation Methods

55

Hsu C.M.; etal.,A ppl.P hys .L ett.2008 , 93 , 133109
Chern W.; N ano L ett.2010, 10, 1582–1588

http://www.microchemicals.com/products/wafers/silicon_ingot_production.html

 Vapor-liquid-solid (VLS) mechanism

 Bottom-up



Si nanowire Preparation Methods
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Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.
V. Schmidt, etal.; C hem.Rev.2010, 110, 361

a) Chemical vapor deposition (CVD)
b) Molecular Beam Epitaxy (MBE)
c) Laser Ablation

 Energy-intensive conditions
 Costly instrumentation

 Vapor-liquid-solid (VLS) mechanism

 Bottom-up

 Low-temperature electrodeposition

a) Aprotic organic solvent
b) Ionic liquid

 Amorphous deposits at low
temperatures



Electrochemical liquid-liquid-solid process
- electrochemical analog of VLS
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Ec-LLS
• Low m e lting p oint

liquid m e tal(e .g. Ga
(l), Ga/In (l))
nanodrop le t
 Working

electrode
 Mediate phase

for crystallization

 Crystalline Si
 Low

temperature
process

 Simple setup



Group IV semiconductor nanowires prepared
through ec-LLS process
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Carim, A. I.; etal, J.A m.C hem.S oc .2011, 133, 13292.
Gu, J., etal, J.A m.C hem.S oc ., 2013, 135 (5), pp 1684.

Ma, L.; etal, J.Elec troc hem.S oc .,2014, 161, 7, D3044-D3050.
Fahrenkrug, E.; Gu, J.; etal, N ano L ett.2014, 14, 847.

Ma, L,; et al, submitted.

Ge nanowires Si nanowires

200 nm 200 nm



Sinanowire e c-LLS
• Scheme
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Scanning electron micrographs Si nanowires prepared at 120 °C
through ec-LLS
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Ga nanoparticles Si nanowires prepared after
40 mins’ electrodeposition



Characterization of SiNWs by X-ray diffraction & Raman spectroscopy
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 Raman spectrum

H. Richter, Z.P. Wang & L. Ley, S olid S tate C ommu n.1981, 39, 625.

 X-ray diffractogram

• The Si n an ow iresare crystallin e asexam in ed by XRD
an d Ram an



Crystallinity of a single Si nanowires shown by
transmission electron microscope (TEM)
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 Transmission electron
micrograph of a single Si
nanowire

 Mostly crystalline
 With defects

000

100 nm

1 nm



Chemical composition of a single nanowire examined
by energy dispersive X-ray spectroscopy (EDS)
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 Electron micrograph and X-ray spectrum were obtained under scanning TEM mode

Ga
in corporation
in to Si crystal
causesthe
taperin g of
the n an ow ires

Explorin g the effectof tem perature on Ga in corporation
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Temperature dependence of Si nanowire growth
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• Tem perature hasn o obviouseffecton taperin g
• H igheraspectratio w iresare prepared at120 ° C
• No Si n an ow ire grow th observed atbelow 60 ° C



Summary
• Si nanowires are prepared

via ec-LLS at below 100
°C

• As-prepared SiNWs are
crystalline

• Ga incorporation results in
tapering morphology
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Ga during the crystal growth
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Ga



Solute trapping model for crystal growth
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 Nanowire growth are modeled as a step growth process
 Solute trapping takes place when interface velocity approaches Ga

diffusion rate

Courtesy of Josh Demuth

 Hypothesis:
 Higher

temperatures allow
Ga to have higher
diffusivity, thus
results in less Ga
incorporation.

 Identity of liquid
metal electrode will
change the impurity
incorporation rate.



Crystal Growth Conditions
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• VLS
• Conventional

electrodeposition

 High temperature

 Fluid phase

 Low temperature

 No fluid phase

Vere, A. W. C rys talgrowth:princ iples and progres s ; Plenum Press: New York, 1987.

Unconventional
electrodeposition

 Low temperature

 Fluid phase



Scanning electron micrographs of SiNWs grown on Si(100) and Si(111) substrates

 Indirect evidence of epitaxy



Top-down view micrograph of SiNWs
grown on Si(100)

Given the growth orientation to
be <111>, the nanowire grow
continued at four distinct
angles with 90° in-plane angle
separation.
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Using pure In to grow SiNWs
In: CA: -1.4 V, 300 s
Si: CA: 100 °C, -1.4 V, 1800s

No Si deposit
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Ga cap



Try to deposit SiNWs at 200 °C
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-1.6 V -1.8 V

Ga etching were too fast at this temperature;
No Si deposit observed



New cell design – to accommodate high temperature experiments
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Cell ICell II  Does not make a good seal; leakage
 Low reproducibility
 Glass cracks at high temperature and

pressure

 Propylene carbonate
boils at 242 °C

 SiCl4 creates 400 psi gas
vapor pressure at 200 °C

 Face type o-ring seals
withstand up to 1000 psi

 Compression tube fittings
withstand 50 ~ 220 psi at
20 °C;



Potentiostatic deposition of SiNWs at 150 °C

• -1.4 V vs Pt QRE, 30 mins
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Nanowire length versus potential and temperature
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100 °C, -1.4 V

150 °C, -1.4 V

• All deposition were 30
mins long

• Taper angle (α) at
different temperatures
and potentials are not
significantly different

• Deposition potential
affects nanowire aspect
ratio (AS)

100 °C, -1.2 V AR = 1.4 ± 0.29
α = 4 ± 1 °

AR = 4.4 ± 0.98
α = 2.8 ± 0.9°

100 °C, -1.6 V AR = 4.8 ± 0.91
α = 2.2 ± 0.9°

AR = 4 ± 1.1
α = 3 ± 1°

150 °C, -1.6 V AR = 8 ± 1.2
α = 2.3 ± 0.4°
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